Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface
نویسندگان
چکیده
منابع مشابه
Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through tran...
متن کاملUsing Riemannian geometry for SSVEP-based Brain Computer Interface
Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While work...
متن کاملBrain Computer Interface using Machine Learning
This paper presents the design and development of a complete hardware and software solution for a brain computer interface (BCI). It consists of a non-intrusive multiple channel data acquisition device which captures the electrical brain wave signals and passes the data to a computer. The computer then uses signal processing and machine learning algorithms to identify patterns in the signals re...
متن کاملBrain-computer interface (BCI) operation: optimizing information transfer rates.
People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In the present version of the cursor movement task, vertical cursor movement is a linear function of mu or beta rhythm amplitude. At the same time the cursor moves horizontally from left to right at a fixed rate. A t...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroscience
سال: 2016
ISSN: 1662-453X
DOI: 10.3389/fnins.2016.00430